PHYSIOLOGIE DE LA THYROIDE - EXPLORATION

1. PHYSIOLOGIE DE LA GLANDE THYROIDE

- 1.1 Anatomie, Histologie, Embryologie
- 1.2 Synthèse hormonale thyroïdienne
- 1.3 Régulation hormonale de la synthèse des hormones thyroïdiennes
- 1.4 Transport et concentration sanguine
- 1.5 Catabolisme périphérique des hormones
- 1.6 Actions physiologiques de T3/T4 (Effet pléiotrope et ubiquitaire)
- 1.7 Variation physiologique

2. EXPLORATION DE LA THYROIDE – BILAN THYROIDIEN

- 2.1 <u>Examen clinique</u> (goitre, nodule, consistance, homogénéité, souffle, ADP, signe de compression, exam amen clinique global)
 - 2.2 Exploration biochimique statique et dynamique
 - →TSH +++
 - \rightarrow T41
 - → Protéines vectrices
 - \rightarrow Ac
 - → Thyroglobuline, Calcitonine
 - → lodurie
 - → Test à la TRH
 - 2.3 Exploration biologique (Glycémie, EAL, NFS, Ca++...)
- 2.4 <u>Examen morphologique</u> = Imagerie (Radio, écho, scintigraphie), cytologie

1. PHYSIOLOGIE DE LA GLANDE THYROIDE

1.1 Anatomie, Histologie, Embryologie

- Glande endocrine vésiculée faite de follicules thyroïdiens (300um) comprenant :
 - o une paroi contenant :
 - les cellules folliculaires (=thyréocytes) pole basal/apical
 - les cellules C
 - un colloïde amorphe
 - + Glandes parathyroïdes
- Les cellules folliculaires sécrétent les hormones thyroïdiennes T3 et T4 :
 - T3 = Triiodothyronine
 - T4 = Tetraiodothyronine ou Thyroxine
- Les cellules C(claires) sécrétent la Calcitonine (Hypocalcémiante)

NB : Développement embryonnaire à partir de la 12emeSA et sécrétion d'hormone par le fœtus à partir de la 20emeSA. Les hormones thyroïdiennes de la mère passe la BP et sont la source unique d'hormones du fœtus avant la 20SA.

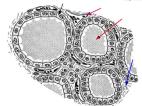
1.2 Synthèse hormonale thyroïdienne

Rappels : Différents isotopes de l'iode

- →Isotope naturel : I¹²⁷
- →Isotopes artificiels :
 - -I¹²⁵ (période = 60jours)
 - -I¹³¹ (période = 8jours)
 - -I¹²³ (période = 3h) →Scintigraphie (élim rapide)

Apports alimentaires

Alimentation=unique source d'iode pour l'organisme (pas de synthèse d'iode endogène !)


- -Principal réservoir = l' des océans
- -Apports variables selon le lieu(/mer), mode de vie, habitudes alim
 - → crétinisme des Alpes
- -Apports journaliers pour un adulte = 100-200µg
 - →Si apports iodé < 25 μg/j →Hypothyroïdie
 - →Apports d'iode systématique dans les regions à risques de carence

NB : → La thyroïde contient 10 mg d'iode

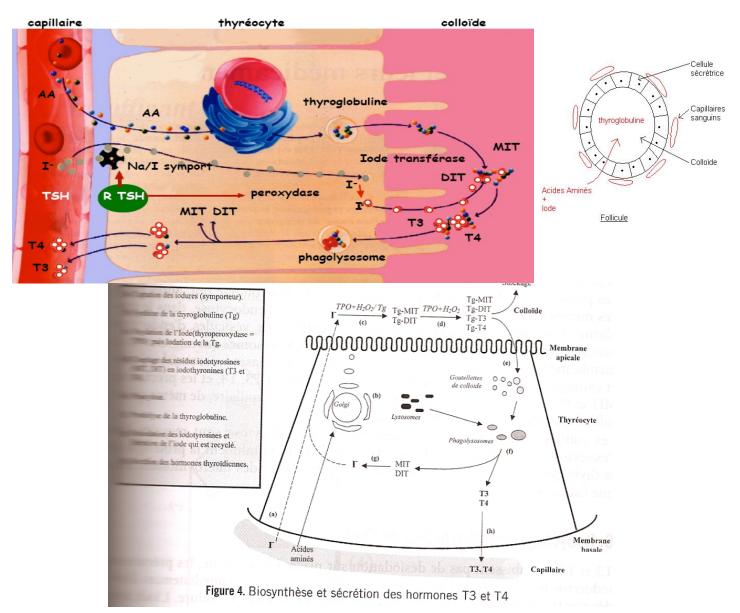
Métabolisme de l'iode

- -Transformation en I- dans l'estomac, absorption quasi totale dans l'intestin
- -Captage actif des iodure par la thyroïde (mais aussi d'autres organes : glandes salivaires, TGI, plexus choroïdes, placenta, glande mammaire...)
- -Elim urinaire (lodurie = reflet/conso)(Cl iodures = 30-40ml/min) Elim digestive faible (abso+++)

Mécanisme de synthèse de T3/T4 au niveau thyroïdien

- 1→Captation des acides aminés et des iodures sanguins(transporteur actif symport Na/I) par le thyréocyte.
- $2 \rightarrow \Sigma$ de la thyroglobuline par le RER (tyrosine+++)
- 3→Sécrétion de la thyroglobuline et des iodures I- (Erreur sur le schéma ?) dans le colloïde. Le transporteur des I- s'appelle la pendrine.
- 4→Oxydation de I- en iode I par la TPO (thyroperoxydase) et H202
- 5→Fixation de l'Iode I aux résidus thyrosine de la thyroglobuline par la TPO et H2O2 dans le colloïde = organification de l'iode = formation de résidus iodothyrosine → MIT(Mono-iodo-tyrosine) et DIT
- 6→ Couplage des résidus iodothyrosine en i<mark>odothyronine</mark> par la TPO dans le coloïde→ Formation T3 et T4

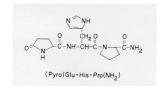
(T3=MIT+DIT = Triiodothyronine T4=DIT+DIT = Tetraiodothyronine = thyroxine)


NB : Seule la forme lévogyre des hormones est actives.

- 6→Endocytose/Pinocytose du colloïde par les cellules folliculaires et formation de gouttelettes de colloïde intra-cytoplasmiques
- 7→(phagosomes puis phagolysosomes → Protéolyse de la thyroglobuline et libération de T3, T4, MIT et DIT libre dans le thyréocyte

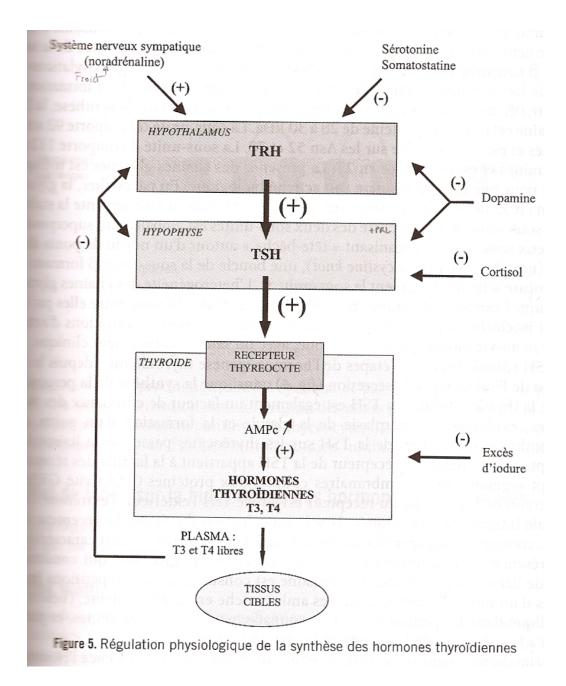
NB : Le Lithium inhibe la protéolyse de la thyroglobuline.

 $8 \rightarrow \text{Libération sanguine}$ de T3/T4 + recyclage des DIT/MIT par une désiodase microsomale \rightarrow I-


NB : Il existe des hypothyroïdie par déficit enzymatique en cette enzyme → Pas de recyclage

1.3 Régulation hormonale de la synthèse des hormones thyroïdiennes

* Régulation par l'axe hypothalamo-hypophysaire (TRH/TSH)



 \rightarrow Libération de TSH par l'hypophyse (194aa – 1chaine α commune avec la FSH, LH, HCG - chaine β spécifique – pls isoformes possibles.

→Action de la TSH sur la thyroïde :

- Action sur son Rc (RCPG)→ Augmentation de l'AMPc et IP3
- captation des iodures (active et augmente la synthèse du transporteur Na/I)
- Active la synthèse de la thyroglobuline
- Active la TPO et favorise sa synthèse
- Augmente la pinocytose des microvillosités et l'activité lysosomiale
- Facteur de croissance des thyréocytes (→ goitre si hyperTSH)
- →Rythme circadien, à maximum nocturne.
- → Rétrocontrole négatif

Régulation par les iodures (I-)

- →Effet de protection contre l'excés d'iode
- →Effet de « Wolff-Chaikoff » :
 - Inhibition de l'organification de l'iode si excès d'iode
 - Indépendant de la TSH
 - Régresse au bout de 48h (pour éviter une hypothyroïdie)

1.4 Transport et concentration sanguine

→Liaison à :

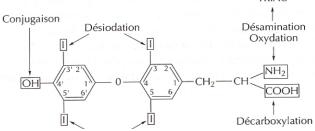
- la TBG(thyroxin binding globuline): 75%
- la TBPA (thyroxin binding préalbumine) : 25%
- l'albumine (liaison non spécifique) : 10%
- certaines lipoprotéines (négligeable)
- fraction libre :

N. C.	Thyroïde	
T4 L	desiodase rT3 inactive	6 desiodase ➤ T2
2 Caractéristiques métaboliq		et euthyroïdien
	T4	13
State .	100 % thyroïde	1/3 thyroïde 2/3 périphérie
distribution (litres)	9	37
	7 jours	1 jour
Figuration (%) par jour	11 %	69 %
male pirculante (concentration moyenne)	100 nmol/L	2 nmol/L
in sinculante	10-30 pmol/L	3-6 pmol/L

-T4t : 40 à 120 μg/L-1	-T3t 0.6 à 1.8 μg/L-1	
-T4I: 10 à 23 pmol/L-1	-T3I 3.5 à 9pmol/L-1	-TSH 0.3 à 6mUI/L-1
-1/2 vie : 7j	-1/2vie : 1jour	

NB:

- -Concentrations tres faible dans le sang!
- -T3 plus active que T4 mais les protéines porteuses sont 10X plus affines pour T4!
- -T4 bc moins diffusible que T3 au niveau des tissus (car plus liée)


1.5 Catabolisme périphérique des hormones

→ 4 processus :

- Désiodation en 5' ou en 5 au niveau hépatique/rein, muscle(T4→T3 ou rT3→DIT→MIT→Tyrosine)
- Conjugaison :
 - Sulfoconjugaison hépatique de T3 ou T2
 - Sulfo et glucuronoconjugaison hépatique de T4
 - Elimination biliaire → Cycle entérohépatique
- Décarboxylation
- Désamination oxydative → Dérivés TRIAC et TETRAC
- -Désiodation possible en 5 → T3 reverse = composé triode inactif → Adaptation métabolique pour diminuer le métabolisme de base.
- -Recyclage des I libres et catabolisme des AA

NB: importance de la désiodation de T4 (donne T3 en fonction des besoins hormonaux)

-Elim urinaire (lodurie = reflet/conso)(Cl iodures = 30-40ml/min) et digestive (ss forme glucuro/sulfo-conjugué)

1.6 Action physiologiques de T3/T4 (Effet pléiotrope et ubiquitare)

- -Seule la fraction libre (non liée) est biologiquement active
- -T4 et T3 pénètrent dans la cellule (transport actif/Na+)
- -Désiodation de T4 en T3
- -Migration de T3 dans le noyau et fixation sur des récepteurs nucléaires → Fixation à l'ADN
- -Activation de la synthèse de différentes ARN impliqués dans la synthèse de plusieurs protéines.
- -Tissu riche en Rc T3 = hypophyse et foie.

 NB : Une fraction de T4 peut aussi agir/ noyau

 T4

 ST

 Déiodinase

 T3

 ARNM

 ARNM

 ARNM

Action sur la synthèse et la sécrétion de TSH :

- o Inhibition de la synthèse de TSH (rétrocontrôle négatif)
- o Action de la T3 après désiodation de la T4 par une désiodase de type II

> Action sur la croissance et le développement :

- Différentiation et maturation des tissus fœtaux
- o Développement du SNC, myélinisation, croissance du squelette et de tous les organes

Maintien de l'activité métabolique → Augmentation du métabolisme de base :

- Protéines → Augmente la synthèse peptidique, mais effet catabolisant si hyperthyroïdie (+ ostéoporose)
- ⊙ Glucides → Glycolyse → Hyperglycémiant
- o Lipides → Lipolyse , ↑Rc LDL, oxydation des AG → Baisse du Cholestérol et TG
- o Azote → Contrôle du métabolisme
- Chaleur → Calorigénèse
- Oxygène → ↑ la conso
- Effet ∑mimétique , ↑ Du nb de Rc à l'Adr
- Effet hydroelectrolytique → ↑ le DFG (oedeme si hypothyroïdie)

Action viscérale :

NB: -pas de tissus cible propre

- -effets lents
- -action en synergie ou compet avec autres hormones

	Hyperthyroïdie	Hypothyroïdie
Cœur	Tachycardie Débit cardiaque ↑ Troubles du rythme	Bradycardie Débit cardiaque ↓ Blocs auriculo-ventriculaires
Muscles	Myasthénie Décontraction rapide (réflexogramme court)	Myotonie Crampes Décontraction lente (réflexogramme lent)
Système Jerveux	Nervosité Agressivité Hyperémotivité	Apathie Ralentissement Dépression
ube digestif	Diarrhée	Constination

1.7 Variation physiologique

> Age:

- o NN → Pic de TSH à la naissance (adaptation de la thermogénèse et réponse cardiaque)
- o Stabilisation au cours des premières semaines de vie
- o Dépistage néonatal de l'hypothyroïdie au 3eme jour de vie (dosage de la TSH)
- o Sécrétion préférentielle de T3 chez le NN
- o Chez les vieux → Syndrome de T3 basse (relié à un mauvais état général)

Grossesse :

- o Besoins en hormones et en iode augmentés
- Augmentation de la TBG (via les OE) → Augmentation des hormones totales, mais pas des libres
- o L'HCG entraine une stimulation de la thyroïde (TSH-like)

> Rythme circadien :

- o Pic nocturne pour la TSH autour de minuit
- o 9 à 17 pulses par jours (médié par l'hypothalamus)

2. EXPLORATION BIOCHIMIQUE DE LA THYROIDE ET CAT:

2.1 Exploration statique

Dosages plasmatiques hormonaux

```
→TSH+++
```

```
-Indice de la fct thyroïdienne
```

- -Examen de 1ere intention (+exam complem si valeur >référence ou suspicion de patho hypophysaire)
 - →permet de diagnostiquer 95% des pb thyroide (+NN recherche hypoT apres 5j)
- Méthode immunochimique à Ac monoclonaux (Ultrasensibilité $\rightarrow 0.04 \text{ mUI/L}$) Principe :
- Réaction: Maintien du prélèvement à 4°C pour dosage T4 si observation non caractéristique
- 0,3 à 6 mUI/L Valeur :
- Variation:
 - -TSH ↑↑ → Hypothyroïdie periphérique
 - → Hyperthyroïdie centrale
 - -TSH ↑ →Hypothyroïdie modérée(ou prise à un stade précoce)
 - →Guérison de pathologie non thyroïdienne
 - -TSH ↓ →Syndrome de basse T3 (patho non thyro associée)
 - -pas de conversion T4→T3
 - -modifications des protéines porteuses
 - -cortisol (action sur l'axe)
 - -TSH ↓↓ → Hyperthyroïdie périphérique
 - →Hypothyroïdie centrale

→T4libre

- Principe: Méthode directe ou utilisant analogue structural (NB : pb d'Ac hétérophiles)
- Valeur : 10 à 23 pmol/L
- Variation:
 - -T4I ↑(+T3I ↑) → Hyperthyroïdie
 - →Tumeur hypophysaire sécrétante (T3I+++)
 - -T4I ↓ → Hypothyroïdie
 - → Syndrome de basse T3 (+↓T3I)

NB : Pb d'Ac hétérophile (défixation aux protéines porteuses)+pb si ΔC impt en prot porteuses

NB: T3↑↑ / Hyperthyroïdie mais N dans l'hypothyroïdie...→T3l = aucune valeur diagnostique/HypoT

NB: T4t et T3t non utilisées (pb / prot porteuses)

Application: Examen de 2^{ème} intention si dosage TSH non significatif

	Élevée	T4I	Basse
Élevée	Tumeur hypophysaire sécrétante (TSH, rare) (T3I = ↑)	Hypothyroïdie limite/compensée	Hypothyroïdie (primaire) Guérison d'un syndrome de basse T3
Normale	Euthyroïdie avec autoanticorps anti-T4 (rare)	Euthyroïdie	Syndrome de basse T3 (T3I = ↓) Hypopituitarisme (autres hormones hypophysaires = ↓)
Basse	Hyperthyroïdie (T3I = ↑)	T3 thyrotoxicose (T3I = ↑) Stade précoce du traitement d'une hyperthyroïdie Hyperthyroïdie infraclinique (T3I = N/↑)	Hypopituitarisme (autres hormones hypophysaires = ↓) Syndrome de basse T3 (sévère) (T3I = ↓)

Dosages des protéines vectrices

■ Intérêt : s'affranchir des variations de T3/T4 liées aux variations du taux des protéines de transport

TBG: Tyroxine Binding Globulin
 TBPA: Transthyrétine ou Pré-albumine

Ex: Les OE augmentent la TBG donc la T4 totale (mais pas la T4l)

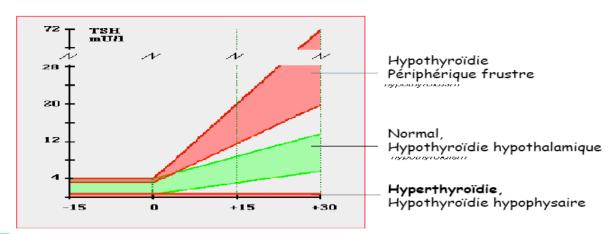
❖ Dosages de la thyroglobuline

Principe : Méthode immunoradiometrique

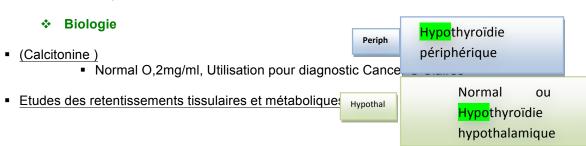
Valeur: Très faible, Interférence avec Ac(Thyroglobuline) à neutraliser

Augmentation	parients presentant une pathologiesi
Causes génétique	othalamique, pour évaluer la capiena
Grossesse	
Estrogènes, dont	la contraception orale
Diminution	
Causes génétique	s Mortag suban de minazosare panan
Fuites protéiques	par exemple syndrome néphrotique
Malnutrition	
Malabsorption	
Acromégalie	
Maladie de Cushi	ng Balanda a sa
Corticostéroïdes	à doses élevées)
Maladies graves	
Androgènes	

- Variation: Hyperthyroidie
- Application : Surveillance post-opératoire du cancer de la Thyroïde (Son taux doit être nul), pas d'intérêt diagnostic


- Recherche et dosage d'Ac anti thyroïdiens
- <u>Cibles</u>: -péroxydase ou microsome = <u>TPO</u>
 - -Thyroglobuline
 - -récepteurs de la TSH
 - -T3/T4
 - -symporteur Na/I (pôle basal thyréocytes)
- →Hashimoto, Myxoedeme idiopathiq

 →Basedow
- Anticorps microsomaux (TPO), anti-Thyroglobuline :
 - Diagnostic thyropathie auto-immune → Thyroïdite de Hashimoto, Myxoedeme,Basedow
 - NB : ces Ac sont presents dans presque ttes les Thyropathie Al
- TBII ou TRAK: Thyrotropin Binding Inhibiting Immunoglobulin ou TSI ou TGI (selon méthode de dosage)
 - Ac anti-récepteur à TSH stimulant fonctionnement Thyroïde → 30-50% si Maladie de Basedow
 - NB : demandé si syndrome de thyrotoxicose sans signes oculaires


NB : Ac utiles si bilan ne permet pas de trancher en faveur d'une étiologie (Ac n'ont pas de valeur diagnostique Ex : 10% des Vieux ont des AutoAc antithyroïde mais sont euthyroïdien!)

► Exploration dynamique

- ❖ Test à la TRH
- Principe: Injection 100 à 200μg de TRH (PROTIRELINE®) puis dosage TSH à 0,20 et 60 min
- Observation Sujet Normal Max à 30-60min jusque 15-20 mUI/L

- Application: Peu utilisé sauf diagnostic Insuffisance Anté-Hypophyse (Hypothyroïdie+++)
 NB: Test n'est plus utilisé aujourd'hui depuis la TSH ultrasensible (preduit le résultat du test!)
- Variation
- ► Examems complémentaires

Hypophy

ou

Hyperthyroïdie

Hypothyroïdie hypophysaire

- Glycémie
- Métabolisme phosphocalcique
- Dosage Triglycérides et Cholestérol
- Enzymes musculaires
- Enzymes hépatiques
- NFS

↑Ca++, ↑P, ↑Glycémie ↓Cholestérol/TG, ↑ALAT, Neutropénie

↑Cholestérol/TG ,↓Na+, ↑Creatkinase

Hypothyroïdie

Hyperthyroïdie

Anémie macrocytaire

NB : Utiles mais sans valeur diagnostique

* Exploration morphologique

→Scintigraphie

Principe: Injection radiopharmaceutique comportant de l'iode 123 (ou Technétium 99) fixé par la Thyroïde

→Suivi de la distribution du traceur au niveau de la thyroïde par gamma –caméra

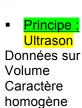
Observations: Nodule Froid: Pas de fixation Composé radioactif (/K?)

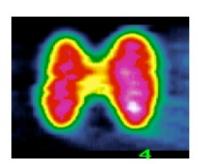
Nodule Chaud: Forte fixation

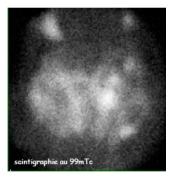
→Captation uniforme : BASEDOW

→Captation irrégulière : GMNT

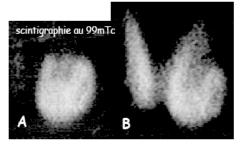
→Zone <mark>hyperfixante : Adénome Toxique</mark>


→Ecran blanc :Thyroïdite, HT iatrogène


 AT


GMNT

→Echographie



le exact, ou non

■ Observation: Nodule → Signal #, Examen de référence

→**Radiographie du cou**

- Principe: RX → Observation Vertèbre cervicale, Trachée

▶ Problèmes rencontrès

→Résultats anormaux :

- -Infections
- -<mark>K</mark>
- -IdM
- -Post-op

Absence de pathologie thyroïdienne mais bilan peu interprétable.

- ↓T4I et T3I, TSH N ou indétectable -/Guérison : ↑TSH transitoire, T4I et T4I N Syndrome de « basse T3 »

-/IRC : ↓T4I T3I TSH N ou ↓

Médicaments et fonction thyroïdienne		
Médicaments	Effets	
Corticostéroïdes Agents dopaminergiques	Inhibent la sécrétion de TSH	
Lithium, iode, carbimazole, thiouraciles	Inhibent la sécrétion de T3 et de T4	
Estrogènes, phénothiazines Corticostéroïdes, androgènes Salicylés, phénytoïne	Augmentent la TBG Diminuent la TBG Entrent en compétition avec la T4 au niveau des sites de fixation de la TBG	
β-bloquants, amiodarone*	Inhibent la conversion de T4 en T3	